
Hands-on session
synthetic observations

NBI Summer school Protoplanetary disks

dr. Nienke van der Marel

NRC Herzberg, Victoria BC

http://www.nienkevandermarel.com

August 8th 2019

Goals of session
• Learn to generate a radiative transfer dust continuum image at 870 micrometer

(ALMA Band 7) of a transition disk with a large cavity, using RADMC3D

• Learn basics of ALMA interferometry

• Learn how to simulate an ALMA observation in CASA using the continuum
image and choices of parameters:

• Configuration

• Integration time

• Declination

• Disk mass

• Stellar luminosity

• Telescope

RADMC-3D
• Radiative transfer tool, to compute temperatures and resulting

emission (line and continuum) based on a given disk structure and
star (important: no chemistry or gas heating processes! Careful
with line predictions)

• http://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/

• Developed by Kees Dullemond (Heidelberg), follow-up of RADMC

• Code is written in Fortran, but interaction through IDL or python
functions.

• We will use the python wrapper radmc3dPy, developed by Attila
Juhasz: https://www.ast.cam.ac.uk/~juhasz/radmc3dPyDoc/

http://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/
https://www.ast.cam.ac.uk/~juhasz/radmc3dPyDoc/

RADMC-3D

• A typical run consists of two parts, plus diagnostics:

1. Set up model parameters and calculate the
temperature structure

2. Compute an output image (at any wavelength and
inclination) or SED

3. Create plots of the model structure, e.g. density,
temperature, optical depth, etc.

RADMC-3D
• Important: create a new folder for each model you want to run: files will be

copied and written in that folder

• Steps first part (following continuum model tutorial):

• Copy ../python_examples/datafiles/dustkappa_silicate.inp into directory

• Start python

• > from radmc3dPy import *

• > analyze.writeDefaultParfile('ppdisk')

• > par = analyze.readParams()

• > par.printPar()

• > setup.problemSetupDust('ppdisk', mdisk='1e-2*ms', gap_rin='[1.0*au]',

gap_rout='[40.*au]', gap_drfact='[1e-5]', nz='0')

• > import os

• > os.system('radmc3d mctherm')

Stellar parameters L* = 4πR2
*σSBT4

*

Disk parameters

Disk parameters
Surface density profile: expontential power-law with a gap

Andrews et al. 2011

(Note: set either Mdisk or Σ0)

Vertical scale height: power-law

dusttogas = inverse
gas-to-dust ratio

gap_drfact = set to 0

gap_rin = set to 10 au

gap_rout = Rcav

hrdisk = hc

hrpivot = Rc

plh = ψ

plsig1 = γ

rdisk = not set

rin = Rsub

sig0 = Σc

Parameter names

Many additional parameters (and if you go into code you
can change anything you want) but we keep it simple now

Generate image
• > image.makeImage(npix=600., wav=870., incl=30., phi=20., sizeau=300.)

• Plot the image within current python session (with and without convolution):

• > import matplotlib.pylab as plb

• > im = image.readImage()

• > image.plotImage(im, au=True, log=True, maxlog=10, saturate=1e-5,

cmap=plb.cm.gist_heat)

• > cim = im.imConv(fwhm=[0.06, 0.06], pa=0., dpc=140.)

• > image.plotImage(cim, arcsec=True, dpc=140., log=True, maxlog=10,

bunit='snu', cmap=plb.cm.gist_heat)

• Or save the image into a fitsfile:

• > im = image.readImage()

• > im.writeFits('myimage.fits', dpc=140., coord='03h10m05s -10d05m30s')

Generate plots model structure
• > import matplotlib.pylab as plb

• > import numpy as np

• 2D density contour plot:

• >>> c = plb.contourf(data.grid.x/natconst.au, np.pi/2.-data.grid.y,
np.log10(data.rhodust[:,:,0,0].T), 30)

• >>> plb.xlabel('r [AU]')

• >>> plb.ylabel(r'$\pi/2-\theta$')

• >>> plb.xscale('log')

• >>> cb = plb.colorbar(c)

• >>> cb.set_label(r'$\log_{10}{\rho}$', rotation=270.)

• Opacity plot:

• >>> opac = analyze.readOpac(ext=['silicate'])

• >>> plb.loglog(opac.wav[0], opac.kabs[0])

• >>> plb.xlabel(r'λ [μm]')

• >>> plb.ylabel(r'$\kappa_{\rm abs}$ [cm2/g]')

• Optical depth plot:

• data.getTau(wav=0.5)

• >>> c = plb.contour(data.grid.x/natconst.au, np.pi/2.-data.grid.y,
data.taux[:,:,0].T, [1.0], colors='w', linestyles='solid')

• >>> plb.clabel(c, inline=1, fontsize=10)

Now create some models!
• Now create a few models with varying parameters, e.g. cavity

size, disk mass, stellar luminosity (radius) that we are going to
use in the ALMA simulation. Choose wavelength=870 μm (Band
7), and distance 100 pc

• Inspect your images with the plotter tool and check the output
fits file with a fits viewer, e.g. SAO DS9 (http://ds9.si.edu/site/
Download.html).

• DO NOT USE SAO DS9 IF YOU UPDATED TO MOJAVE10.14.6!
Use other viewer, e.g. online js9 (https://js9.si.edu/) instead.

• Check the fits header to see if you understand all parameters.

http://ds9.si.edu/site/Download.html
http://ds9.si.edu/site/Download.html
https://js9.si.edu/

ALMA interferometry
• Every antenna is connected with every

antenna (baseline)

• So 3 antennas: 6 baselines, 4 antennas:

24 baselines, etc.

• Each baseline (interference pattern)
provides a resolution element or spatial
scale λ/B (B = baseline length), which
can be described as point in the u,v-
plane

• For observing, you want to fill the u,v-
plane as much as possible to cover all
possible spatial scales and get a nice
clean beam

• ALMA:

• 12m-array: 50 antennas, 10 possible

configurations with baselines <16 km

• 7m array (ACA): 12 antennas

• Total power array: 4 antennas 

ALMA interferometry
• The u,v-plane is the collection of all u,v points and can be

filled up by adding more baselines and by using the Earth
rotation, as the baseline orientation and position changes
from the point of view of the source (hour angle and elevation)

Earth rotation and track source
with intermissions (calibrator)

ALMA interferometry
• The u,v-plane can be considered the Fourier transform of the x,y-

plane: imaging interferometry data means Fourier transforming it

• The u,v-coverage :

• The sampling of the u,v-plane: the better it is filled, the more
accurate your image will be

• The Fourier transform of the u,v-coverage gives you your beam
or PSF: perfect coverage results in a perfect Gaussian beam,
imperfect coverage results in a ‘dirty beam’ with sidelobes

• Coverage at long baselines means you are sensitive to small
spatial scales: coverage at short baselines means you are
sensitive to large spatial scales => you usually cannot have
both at the same time!

ALMA interferometry

Each configuration has a
limited number of baseline

lengths, or a limited
number of spatial scales

you are sensitive to

MRS: maximum
recoverable scale

AR: angular resolution

Dirty beam

Dirty beam Perfect beamVery dirty beam

u,v-coverage 
(example: SMA 

with 8 antennas)

Beam or PSF

ALMA simulating
• ALMA simulation in CASA: provide an

image and the details of the requested
observations (configuration,
integration time, declination of source,
frequency) and compute how your
image would look like when observed

• Two main differences between
convolution and ALMA simulation:
spatial scales + side lobes

• Difference generally gets worse in
more extended configurations: less
u,v-coverage at long baselines

u,v-coverage

5h ALMA observation

ALMA simulating

Model image
(Band9: 672 GHz)

Configurat
ion 5

Configuration 8

Convolved Simulated

AR ~ 0.02”

MRS ~ 0.2”

AR ~ 0.
1”

MRS ~ 1.
2”

Note that only 2/3 of total
flux is recovered in C8

ALMA simulating
• Start CASA

• Simulator: simalma() (in the past: two separate tasks, simobserve() and
simanalyze())

• How to run a task:

• > inp(simalma) => all parameters appear in screen

• Set parameters (e.g. skymodel=‘myimage.fits’)

• > inp => all set parameters appear in screen (when problem: red)

• > go

• Output images will appear in separate window (automatically saved) and a logger

• CASA will create a folder with name of the project parameter in the current
directory and put all files in there

ALMA simulating

Additional parameters can be set, but generally not necessary

Possible configurations
(more online,  

also other telescopes)

Total integration time

Location source

Model fits file

Important!

Name project folder (new one every run)

[(these parameters are for re-scaling if
you don’t like values in fits header]

ALMA Band is chosen
based on frequency as
set in the FITS header!

ALMA simulating
Output PNG files (in folder)

XX.observe.png XX.image.png

XX.analysis.png

ALMA simulating
Also possible:

Inspect, analyse and
overlay generated images
in the CASA viewer

> viewer

Useful: draw a region and
measure total flux
(‘Statistics’)

Export to fits file:

> inp(exportfits)

> imagename=‘XXX.image’

> fitsimage=‘XXX.fits’

> go

Now simulate some models!

• With the models that you generated before, do an ALMA simulation and inspect the
outcome images. Play around with different configurations, integration times, source
position and check the outcome for beam size, recovered flux and overall structure/noise

• Configuration table: https://almascience.nrao.edu/proposing/proposers-guide#section-37
(Note that configurations are the same for Cycle 6 and 7)

• Additional configuration files (other telescopes): 
https://casaguides.nrao.edu/index.php/Antenna_Configurations_Models_in_CASA_Cycle6

• You can even change the telescope with the antenna list parameter! In that case, run
simobserve() and simanalyze(), input parameters are the same as simalma()

• More information: https://casaguides.nrao.edu/index.php/
Simulating_Observations_in_CASA_5.1  
(note that this hasn’t changed for CASA 5.5)

https://almascience.nrao.edu/proposing/proposers-guide#section-37
https://casaguides.nrao.edu/index.php/Antenna_Configurations_Models_in_CASA_Cycle6
https://casaguides.nrao.edu/index.php/Simulating_Observations_in_CASA_5.1
https://casaguides.nrao.edu/index.php/Simulating_Observations_in_CASA_5.1
https://casaguides.nrao.edu/index.php/Simulating_Observations_in_CASA_5.1

