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Goals of session
• Learn to generate a radiative transfer dust continuum image at 870 micrometer 

(ALMA Band 7) of a transition disk with a large cavity, using RADMC3D


• Learn basics of ALMA interferometry


• Learn how to simulate an ALMA observation in CASA using the continuum 
image and choices of parameters:


• Configuration


• Integration time


• Declination


• Disk mass


• Stellar luminosity


• Telescope



RADMC-3D
• Radiative transfer tool, to compute temperatures and resulting 

emission (line and continuum) based on a given disk structure and 
star (important: no chemistry or gas heating processes! Careful 
with line predictions)


• http://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/


• Developed by Kees Dullemond (Heidelberg), follow-up of RADMC


• Code is written in Fortran, but interaction through IDL or python 
functions. 


• We will use the python wrapper radmc3dPy, developed by Attila 
Juhasz: https://www.ast.cam.ac.uk/~juhasz/radmc3dPyDoc/

http://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/
https://www.ast.cam.ac.uk/~juhasz/radmc3dPyDoc/


RADMC-3D

• A typical run consists of two parts, plus diagnostics:


1. Set up model parameters and calculate the 
temperature structure


2. Compute an output image (at any wavelength and 
inclination) or SED


3. Create plots of the model structure, e.g. density, 
temperature, optical depth, etc.



RADMC-3D
• Important: create a new folder for each model you want to run: files will be 

copied and written in that folder


• Steps first part (following continuum model tutorial):

• Copy ../python_examples/datafiles/dustkappa_silicate.inp into directory

• Start python

• > from radmc3dPy import *

• > analyze.writeDefaultParfile('ppdisk')

• > par = analyze.readParams()

• > par.printPar()

• > setup.problemSetupDust('ppdisk', mdisk='1e-2*ms', gap_rin='[1.0*au]', 

gap_rout='[40.*au]', gap_drfact='[1e-5]', nz='0')

• > import os

• > os.system('radmc3d mctherm')





Stellar parameters L* = 4πR2
*σSBT4

*



Disk parameters



Disk parameters
Surface density profile: expontential power-law with a gap

Andrews et al. 2011

(Note: set either Mdisk or Σ0)

Vertical scale height: power-law

dusttogas = inverse 
gas-to-dust ratio

gap_drfact = set to 0

gap_rin = set to 10 au 

gap_rout = Rcav

hrdisk = hc

hrpivot = Rc

plh = ψ

plsig1 = γ

rdisk = not set 

rin = Rsub

sig0 = Σc

Parameter names

Many additional parameters (and if you go into code you 
can change anything you want) but we keep it simple now



Generate image
• > image.makeImage(npix=600., wav=870., incl=30., phi=20., sizeau=300.)

• Plot the image within current python session (with and without convolution):


• > import matplotlib.pylab as plb

• > im = image.readImage()

• > image.plotImage(im, au=True, log=True, maxlog=10, saturate=1e-5, 

cmap=plb.cm.gist_heat)

• > cim = im.imConv(fwhm=[0.06, 0.06], pa=0., dpc=140.)

• > image.plotImage(cim, arcsec=True, dpc=140., log=True, maxlog=10, 

bunit='snu', cmap=plb.cm.gist_heat)


• Or save the image into a fitsfile:

• > im = image.readImage()

• > im.writeFits('myimage.fits', dpc=140., coord='03h10m05s -10d05m30s')



Generate plots model structure 
• > import matplotlib.pylab as plb

• > import numpy as np

• 2D density contour plot:


• >>> c = plb.contourf(data.grid.x/natconst.au, np.pi/2.-data.grid.y, 
np.log10(data.rhodust[:,:,0,0].T), 30)


• >>> plb.xlabel('r [AU]')


• >>> plb.ylabel(r'$\pi/2-\theta$')


• >>> plb.xscale('log')


• >>> cb = plb.colorbar(c)


• >>> cb.set_label(r'$\log_{10}{\rho}$', rotation=270.)


• Opacity plot:

• >>> opac = analyze.readOpac(ext=['silicate'])


• >>> plb.loglog(opac.wav[0], opac.kabs[0])


• >>> plb.xlabel(r'$\lambda$ [$\mu$m]')


• >>> plb.ylabel(r'$\kappa_{\rm abs}$ [cm$^2$/g]')


• Optical depth plot:

• data.getTau(wav=0.5)


• >>> c = plb.contour(data.grid.x/natconst.au, np.pi/2.-data.grid.y, 
data.taux[:,:,0].T, [1.0],  colors='w', linestyles='solid')


• >>> plb.clabel(c, inline=1, fontsize=10)



Now create some models!
• Now create a few models with varying parameters, e.g. cavity 

size, disk mass, stellar luminosity (radius) that we are going to 
use in the ALMA simulation. Choose wavelength=870 μm (Band 
7), and distance 100 pc


• Inspect your images with the plotter tool and check the output 
fits file with a fits viewer, e.g. SAO DS9 (http://ds9.si.edu/site/
Download.html). 


• DO NOT USE SAO DS9 IF YOU UPDATED TO MOJAVE10.14.6! 
Use other viewer, e.g. online js9 (https://js9.si.edu/) instead. 


• Check the fits header to see if you understand all parameters.

http://ds9.si.edu/site/Download.html
http://ds9.si.edu/site/Download.html
https://js9.si.edu/




ALMA interferometry
• Every antenna is connected with every 

antenna (baseline)

• So 3 antennas: 6 baselines, 4 antennas: 

24 baselines, etc.


• Each baseline (interference pattern) 
provides a resolution element or spatial 
scale λ/B (B = baseline length), which 
can be described as point in the u,v-
plane 


• For observing, you want to fill the u,v-
plane as much as possible to cover all 
possible spatial scales and get a nice 
clean beam


• ALMA: 

• 12m-array: 50 antennas, 10 possible 

configurations with baselines <16 km

• 7m array (ACA): 12 antennas

• Total power array: 4 antennas 



ALMA interferometry
• The u,v-plane is the collection of all u,v points and can be 

filled up by adding more baselines and by using the Earth 
rotation, as the baseline orientation and position changes 
from the point of view of the source (hour angle and elevation)

Earth rotation and track source 
with intermissions (calibrator)



ALMA interferometry
• The u,v-plane can be considered the Fourier transform of the x,y-

plane: imaging interferometry data means Fourier transforming it


• The u,v-coverage :


• The sampling of the u,v-plane: the better it is filled, the more 
accurate your image will be


• The Fourier transform of the u,v-coverage gives you your beam 
or PSF: perfect coverage results in a perfect Gaussian beam, 
imperfect coverage results in a ‘dirty beam’ with sidelobes


• Coverage at long baselines means you are sensitive to small 
spatial scales: coverage at short baselines means you are 
sensitive to large spatial scales => you usually cannot have 
both at the same time!



ALMA interferometry

Each configuration has a 
limited number of baseline 

lengths, or a limited 
number of spatial scales 

you are sensitive to 

MRS: maximum 
recoverable scale 

AR: angular resolution 



Dirty beam

Dirty beam Perfect beamVery dirty beam

u,v-coverage 
(example: SMA 

with 8 antennas)

Beam or PSF



ALMA simulating
• ALMA simulation in CASA: provide an 

image and the details of the requested 
observations (configuration, 
integration time, declination of source, 
frequency) and compute how your 
image would look like when observed


• Two main differences between 
convolution and ALMA simulation: 
spatial scales + side lobes


• Difference generally gets worse in 
more extended configurations: less 
u,v-coverage at long baselines

u,v-coverage 

5h ALMA observation



ALMA simulating

Model image  
(Band9: 672 GHz)

Configurat
ion 5

Configuration 8

Convolved Simulated

AR ~ 0.02” 

MRS ~ 0.2” 

AR ~ 0.
1”

 

MRS ~ 1.
2”

Note that only 2/3 of total 
flux is recovered in C8



ALMA simulating
• Start CASA


• Simulator: simalma() (in the past: two separate tasks, simobserve() and 
simanalyze())


• How to run a task:


• > inp(simalma) => all parameters appear in screen


• Set parameters (e.g. skymodel=‘myimage.fits’)


• > inp => all set parameters appear in screen (when problem: red)


• > go


• Output images will appear in separate window (automatically saved) and a logger 


• CASA will create a folder with name of the project parameter in the current 
directory and put all files in there



ALMA simulating

Additional parameters can be set, but generally not necessary

Possible configurations 
(more online,  

also other telescopes)

Total integration time

Location source

Model fits file

Important!

Name project folder (new one every run)

[(these parameters are for re-scaling if 
you don’t like values in fits header]

ALMA Band is chosen 
based on frequency as 
set in the FITS header!



ALMA simulating
Output PNG files (in folder)

XX.observe.png XX.image.png

XX.analysis.png



ALMA simulating
Also possible:

Inspect, analyse and 
overlay generated images 
in the CASA viewer

> viewer

Useful: draw a region and 
measure total flux 
(‘Statistics’)


Export to fits file:

> inp(exportfits)

> imagename=‘XXX.image’

> fitsimage=‘XXX.fits’

> go



Now simulate some models!

• With the models that you generated before, do an ALMA simulation and inspect the 
outcome images. Play around with different configurations, integration times, source 
position and check the outcome for beam size, recovered flux and overall structure/noise


• Configuration table: https://almascience.nrao.edu/proposing/proposers-guide#section-37 
(Note that configurations are the same for Cycle 6 and 7)


• Additional configuration files (other telescopes): 
https://casaguides.nrao.edu/index.php/Antenna_Configurations_Models_in_CASA_Cycle6


• You can even change the telescope with the antenna list parameter! In that case, run 
simobserve() and simanalyze(), input parameters are the same as simalma()


• More information: https://casaguides.nrao.edu/index.php/
Simulating_Observations_in_CASA_5.1  
(note that this hasn’t changed for CASA 5.5)

https://almascience.nrao.edu/proposing/proposers-guide#section-37
https://casaguides.nrao.edu/index.php/Antenna_Configurations_Models_in_CASA_Cycle6
https://casaguides.nrao.edu/index.php/Simulating_Observations_in_CASA_5.1
https://casaguides.nrao.edu/index.php/Simulating_Observations_in_CASA_5.1
https://casaguides.nrao.edu/index.php/Simulating_Observations_in_CASA_5.1

